Genetic Factors Influencing the Development of Peyronie’s Disease

Alexander W. Pastuszak, MD, PhD,
Juan C. Bournat, PhD, Yofre Cabeza-Arvelaiz, PhD,
Larry I. Lipshultz, MD, Dolores J. Lamb, PhD
Disclosures

• I have no relevant financial relationships to disclose

• I will not discuss off-label management of clinical conditions
Peyronie’s Disease

Peyronie’s Disease (PD):
- Fibrosis of the penile tunica albuginea
- Affects 3-5% of men 40-70 years old

Pathogenesis:
- Trauma / Inflammation
- Profibrotic Factors (TGF-β, ROS)
- Myofibroblast / Osteoblast Differentiation
- Collagen Deposition / Calcification

- Autosomal dominant inheritance
- Dupuytren’s Disease associated with 20% of men with PD
- Current treatments incompletely effective
Negative Impact of PD on Sexual & Psychological Health

Sexual Health
• Penile curvature → limited ability to have sex
• Penile narrowing / shortening / pain
• Biplanar deformities

Psychological Health
• Social isolation
• Stigmatization
• "Emotional difficulties" → 81%
• Clinical depression → 48%
• Relationship problems → 54%

Dupuytren’s Disease – Another Fibrotic Diathesis

Dupuytren’s Disease (DD)
- Aberrant fibrosis of the palmar fascia → digital contractures
- Affects 4% of the U.S. population
 - 30% of Norwegian men >60 years old!
 - 5x more common in men!

Pathogenesis:

Trauma / Inflammation →
Profibrotic Factors (TGF-β, ROS) →
Myofibroblast / Osteoblast Differentiation →
Collagen Deposition / Calcification

Fibrotic Diatheses Have a Genetic Predisposition

Co-Prevalence
- 22% of men with PD also have DD
- 15% of men with DD have Ledderhose Disease (LD)

Inheritance / Genetic Factors:
- PD, DD and LD → male predominance
- Autosomal dominant inheritance
- Incomplete penetrance

Gene Expression → Overlap Between PD and DD:
- Genes differentially expressed in common between PD and DD:
 - MMP2/9
 - TMβ4/10
 - OSF1/2
 - ARHGDIA

Urology. 2004; 64:399
Chromosomal Abnormalities in Peyronie’s Disease

Structural / Numerical Chromosomal Abnormalities in PD

- 58% of patients have variable chromosomal abnormalities in *PD plaque cells* → ?genomic instability?

- Other somatic cells appear unaffected

<table>
<thead>
<tr>
<th>Structural Abnormalities</th>
<th>Numerical Abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>46XY,t(11;12)(q11,p11)</td>
<td>Trisomy 7</td>
</tr>
<tr>
<td>46XY,t(1;5)(q25;q11)</td>
<td>Trisomy 8</td>
</tr>
<tr>
<td>46XY,inv(7)(p22q36)</td>
<td>45X, -Y</td>
</tr>
</tbody>
</table>

Numerical Chromosomal Abnormalities Occur in Both PD Plaque and Normal Tissue

- Compared Chr 7, 8, 17, 18, X, Y between PD plaque-derived and normal tunica albuginea cells

- Increase in numerical chromosomal abnormalities with cell passage in PD and unaffected TA fibroblasts

PD Fibroblasts

Non-Plaque TA Fibroblasts

TGFβ/Smad Pathway and Fibrosis

Osteoblast Differentiation

Collagen I / III Deposition

Calcification / Bone Formation

Fibrosis

Aims & Approaches

Aim:

To identify genes with variations in copy number in men with both PD and DD that may play a role in fibrotic diatheses.

Approach:

Identify copy number variations (CNVs) in men with PD/DD using array comparative genomic hybridization (aCGH).

Identify roles of these genes in fibrosis using cell-based assays and animal models.
Chromosome deletions NOT detected by Karyotype
Microdeletions in NELL1 & CTDSPL in Men with PD & DD

Patient Cohort:
- 19 Men with PD & DD
- 4 Control Males - no PD or DD, no FHx

11p15.1 → 16.0 kb 3p22.2 → 4.3 kb 11p15.1 → 23.2 kb
NELL1 – A Secreted Growth Factor Involved in Fibrosis & Inflammation

NELL1
- Neural epidermal growth factor-like 1
- Secreted growth factor

NELL1, Fibrosis, and Inflammation
- Osteoblast differentiation, terminal mineralization \Rightarrow BMP and TGF-β pathways
- Associated with human Crohn’s, ankylosing spondylitis

Mouse Phenotype:
Ankylosing spondylitis

CTDSPL – A Phosphatase Effecting TGF-β Signaling

CTDSPL Background
• Carboxy-terminal domain small phosphatase-like
 • Upregulates TGF-β pathway signaling via interaction with Smad1 or Smad2/3 proteins
• Modulates the epithelial-mesenchymal transition
 • Effects myofibroblast differentiation and fibrosis
CTDSPL and NELL1 in Peyronie’s Disease
A Potentially Deleterious SNP in NELL1

NELL1 R82Q SNP
- Associated with human Crohn’s disease and ankylosing spondylitis

<table>
<thead>
<tr>
<th>SNP</th>
<th>Mutation Taster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs8176785 G→A (R82Q)</td>
<td>Damaging</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>R82Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>

p=0.03
NELL1 Overexpression Downregulates Profibrotic and Upregulates Antifibrotic Genes in TA Fibroblasts

Profibrotic

-2.4 fold*

-4.2 fold*

-3.4 fold*

Antifibrotic

9.0 fold*

1.8 fold*

2.0 fold*

2.4 fold*

2.3 fold*

Expressed Gene mRNA ➔ Fibrosis Pathway ➔ TA Fibroblasts

Knockdown

Anti-NELL1 or CTDSPL RNAi

BMPR1B, GDNF, HGF, LIF, STAT1
CTDSPL Overexpression Downregulates Profibrotic Genes in TA Fibroblasts

* p<0.0001
CTDSPL Overexpression Differentially Affects Profibrotic Genes in Control and PD TA Fibroblasts

- **AGT**: -7.6 fold*
- **COL3A1**: -13.0 fold*
- **ITGB8**: -4.3 fold*
- **PLAU**: -4.3 fold*
- **TGFBR1**: -1.2 fold

* p<0.0001
Nell1 Deficient Mice Have Increased Penile Collagen Deposition

![Chart showing hydroxyproline levels in different genotypes]

- Wt: N=3
- Het: N=3, P=0.04
- Null: N=3, P=0.04

Hydroxyproline (μg/μl)

P=0.04
A Role for NELL1 & CTDSPL in Regulating Fibrosis in PD

- Fibroblast
- Myofibroblast
- TGF-β
- Fibrosis
- Collagen
 - Scar
 - Tissue Contraction

NELL1 / CTDSPL
Summary

- A genetic predisposition to fibrosis exists in some men with fibrotic diatheses.
- Microdeletions in NELL1 and CTDSPL occur more frequently in men with PD and DD than in controls or the general population.
- NELL1 and CTDSPL modulate fibrotic signaling pathways in TA fibroblasts.
- Do NELL1 and CTDSPL drive fibrosis, predisposing to PD / DD?
- Nell1-deficient mice manifest more significant penile collagen deposition than WT mice.

Data support a genetic predisposition to aberrant fibrosis as a result of gene dosage alterations in NELL1 and CTDSPL.
Acknowledgments

Funding
- Urology Care Foundation Russell Scott, Jr., Resident Research Award
- Notsew Orm Sands Foundation
- K12 HD073917, K12 Male Reproductive Health Research Career Development Program (to Dolores J. Lamb)

Faculty
Dolores J. Lamb, PhD
Larry I. Lipshultz, MD
Carolina J. Jorgez, PhD

Lab
Juan Bournat, PhD
Yofre Cabeza-Arvelaiz, PhD
Nathan Wilken
Peter Butler
Thank you!