Urethral Stricture Outcomes After AUS Cuff Erosion: Results from a Multicenter Retrospective Analysis

Martin S. Gross1, Mario A. Cleves2, Melissa R. Kaufman3, Douglas F. Milam3, Travis W. Dum4, Joshua A. Broghammer4, William O. Brant5, LeRoy A. Jones6, Chris McClung7, Jeffrey D. Brady8, Gerard D. Henry9.

1Dartmouth-Hitchcock Medical Center; 2University of Arkansas for Medical Sciences; 3Vanderbilt University Medical Center; 4University of Kansas Medical Center; 5University of Utah Hospital; 6Urology San Antonio; 7Central Ohio Urology Group; 8Florida Urology Associates; 9Regional Urology
Artificial Urinary Sphincter

• AMS 800® debuted in 1983
 • Multiple improvements in the interim

• Narrow-backed cuff, infection-retardant coatings, tubing changes, and smaller cuff sizes

• Complication rates have subsequently declined significantly

AUS Cuff Erosion

- Occurs in 2-15% of AUS patients

- Devastating complication
 - Device removal
 - Urinary diversion
 - Recurrent incontinence
 - Delayed reimplantation
 - Stricture formation

Raj GV et al. J Urol 2006..
Stricture After Erosion

• Regular monitoring needed

• Multiple repairs probable

• Increased fibrosis occurrence

• No established rate in literature

Raj GV et al. J Urol 2006..
Objectives

• Multi-institutional experience regarding urethral stricture occurrence following AUS cuff erosion
Methods

• Six sites each with IRB approval

• 80 patients from 1991-2014

• Idiopathic or iatrogenic
Methods

• Three repair types
 • Catheter only
 • Urethrorrhaphy
 • Anastomotic urethroplasty

• Consistent across institutions

• Only minor technical deviations
Methods

• 78 of 80 patients had stricture info

• 85 separate data points provided

• Extensive statistical analysis
Results

• Mean age 73.9 (range 20 to 92)

• 56 idiopathic, 24 iatrogenic

• 23% diabetics at AUS implantation

• 76% post-RRP (54), 10% post-RARP (7)

• 36% salvage XRT (29)
Results

• 32% had stricture after cuff erosion

• Stricture rate not influenced by repair type

<table>
<thead>
<tr>
<th>Repair type</th>
<th>Stricture</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Catheter only</td>
<td>15 (71.43%)</td>
<td>6 (28.57%)</td>
<td>21 (100%)</td>
</tr>
<tr>
<td>Urethrorrhaphy</td>
<td>26 (60.47%)</td>
<td>17 (39.53%)</td>
<td>43 (100%)</td>
</tr>
<tr>
<td>Urethroplasty</td>
<td>12 (85.71%)</td>
<td>2 (14.29%)</td>
<td>14 (100%)</td>
</tr>
<tr>
<td>Total</td>
<td>53 (67.95%)</td>
<td>25 (32.05%)</td>
<td>78 (100%)</td>
</tr>
</tbody>
</table>

Fisher's exact test ($p=0.207$)
Results

- Complete vs. partial erosion
 - Complete erosion more likely to stricture
 - Also complete erosion faster to stricture

<table>
<thead>
<tr>
<th>Erosion Amount</th>
<th>Stricture</th>
<th>Total (N=72)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete</td>
<td>5 (41.7%)</td>
<td>7 (58.3%)</td>
</tr>
<tr>
<td>Partial</td>
<td>45 (75.0%)</td>
<td>15 (25.0%)</td>
</tr>
</tbody>
</table>

Fisher's exact test ($p=0.037$)
Results

- Percent erosion associated with increased stricture rate

- Stricture-free survival shorter for increased percent erosion

<table>
<thead>
<tr>
<th>% Erosion</th>
<th>No</th>
<th>Yes</th>
<th>Total (N=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25%</td>
<td>17 (81.0%)</td>
<td>4 (19.0%)</td>
<td>21 (100%)</td>
</tr>
<tr>
<td>26-75%</td>
<td>14 (70.0%)</td>
<td>6 (30.0%)</td>
<td>20 (100%)</td>
</tr>
<tr>
<td>>75%</td>
<td>10 (52.6%)</td>
<td>9 (47.4%)</td>
<td>19 (100%)</td>
</tr>
<tr>
<td>Total</td>
<td>41 (68.33%)</td>
<td>19 (31.7%)</td>
<td>60 (100%)</td>
</tr>
</tbody>
</table>

Fisher's exact test ($p=0.174$), Score test for trend ($p=0.057$)
Study Limitations

• Retrospective review

• Small population
 • Vast number of AUS cases

• High-volume surgeons
Conclusions

- Strictures occurred after 1/3 of AUS cuff erosions

- Repair type did not influence stricture rate

- Strictures more likely to occur after complete cuff erosion
References

• Leo ME, Barrett DM. Success of the narrow-backed cuff design of the AMS800 artificial urinary sphincter: analysis of 144 patients. J Urol 1993; 150: 1412.
• Raj GV, Peterson AC and Webster GD: Outcomes following erosions of the artificial urinary sphincter. J Urol 2006; 175: 2186.