Comparing Traditional Culture Methods and New Molecular Testing Techniques to Analyze Biofilm Composition on Uninfected IPPs

Martin S. Gross¹, Gerard D. Henry²

¹: Dartmouth-Hitchcock Medical Center; ²: Regional Urology
Biofilm

• Protective coating formed by bacteria
 • Allows for increased survival
 • Occasional planktonic release
 • Potential source of IPP infection

Biofilm Detection

• Traditional Microbiological Culture
 • Swab of device and tissue excision
 • Bacterial growth in culture
 • Identification and sensitivity

Biofilm Detection

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widespread availability</td>
<td>Specimen collection requirements</td>
</tr>
<tr>
<td>Cost effectiveness</td>
<td>Time duration (bacterial growth)</td>
</tr>
<tr>
<td>Local antibiogram sensitivities</td>
<td>Poor delineation of multiple organisms</td>
</tr>
<tr>
<td>Proven historic efficacy</td>
<td>Difficulty culturing anaerobic bacteria</td>
</tr>
</tbody>
</table>
Biofilm Detection

• Molecular analysis
 • PCR amplification of 16S rDNA
 • Identification and sequencing
 • Known bacterial taxonomies

Biofilm Detection

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased sensitivity</td>
<td>Specimen collection requirements</td>
</tr>
<tr>
<td>Increased efficacy in biofilm analysis</td>
<td>Time duration (shipment and processing)</td>
</tr>
<tr>
<td>Antibiotic sensitivity data</td>
<td>Clinical relevance of bacteria</td>
</tr>
<tr>
<td>Relative ease of anaerobic culture</td>
<td>Increased cost</td>
</tr>
</tbody>
</table>
Objectives

• Compare biofilm analysis from clinically uninfected inflatable penile prostheses at removal and replacement for mechanical failure

• Traditional culture methods and 16S ribosomal DNA testing used
Methods

- Specimens: 11 clinically uninfected AMS IPPs during removal/replacement

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPP Duration</td>
<td>39 months</td>
<td>4 months to 12 years</td>
</tr>
<tr>
<td>Patient Age</td>
<td>64 years</td>
<td>51-76</td>
</tr>
</tbody>
</table>
Methods

- All received IV cefazolin and gentamicin
- Device swabbed at capsule entry
- Thorough washout performed
- Pre- and post-washout tissue excised
Results

• Microbiological Culture

 • Ten of 11 prostheses had negative aerobic, anaerobic, acid-fast, and fungal cultures

 • One culture report showed pan-sensitive S. lugdunensis in very small numbers, with negative molecular testing
Results

• 16S rDNA Molecular Analysis
 • Two of 11 prostheses had positive results
 • First specimen had 13 separate bacteria, with 4 known prosthetic infectious pathogens present
 • Only 2 of these infectious bacteria were susceptible to our IV antibiotic regimen
Results

• 16S rDNA Molecular Analysis
 • Two of 11 prostheses had positive results

 • Second specimen had 9 separate bacteria, with 3 known prosthetic infectious pathogens present

 • None of these infectious bacteria were susceptible to our IV antibiotic regimen
Study Limitations

• Small amount of specimens

• Inherent patient factors unknown

• Limited follow-up
Conclusions

• Molecular testing yielded biofilm information that was not reported by conventional culture methods

• Some bacteria identified by molecular testing were known prosthetic pathogens
Conclusions

• 71% of these pathogens showed poor susceptibility to our typical IV antibiotic regimen

• Further research on biofilm needed
References