Pioglitazone improves erectile function after cavernosal nerve injury through an insulin-like growth factor-1 (IGF-1) pathway

DJ Heidenberg, **NM Haney**, B Rezk, S Talwar, S Okpechi, M Honda, B Song, K Swan, S Awadallah, KJ DeLay, S Sikka, A Abdel-Mageed, PJ Kadowitz, WJG Hellstrom

Department of Urology,
Tulane University School of Medicine
New Orleans, LA

This work is funded by a grant from the Sexual Medicine Society of North America
Introduction

Efficacy of pioglitazone on erectile function recovery in a rat model of cavernous nerve injury.

Aliperti LA¹, Lasker GF¹, Hagan SS¹, Hellstrom JA¹, Gokce A², Trost LW³, Kadowitz PJ⁴, Sikka SC¹, Hellstrom WJ⁵.

Author information

Abstract

OBJECTIVE: To examine the effect of pioglitazone on erectile function in a rat model of postprostatectomy erectile dysfunction.

Pioglitazone Enhances Survival and Regeneration of Pelvic Ganglion Neurons After Cavernosal Nerve Injury.

Katz EG¹, Moustafa AA², Heidenberg D¹, Haney N¹, Peak T¹, Lasker GF¹, Knoedler M¹, Rittenberg D¹, Rezk BM³, Abd Elmageed ZY¹, Yafi FA¹, Sikka S¹, Abdel-Mageed AB¹, Hellstrom WJ⁴.

Author information

Abstract

OBJECTIVE: To investigate the effects of pioglitazone on pelvic ganglion neurons in a rat model of bilateral cavernosal nerve crush injury (BCNI), thereby elucidating the actions of pioglitazone in preventing post-prostatectomy neurogenic erectile dysfunction.
Introduction

• Pioglitazone (Actos, Takeda Pharmaceuticals)
 – Diabetic treatment (TZD)
 • Decreases peripheral insulin resistance
 – Peroxisome proliferator-activated receptor gamma (PPARγ)
 – Vasculoprotective and neuroprotective in cerebrovascular accident models

Introduction

- Pioglitazone upregulated IGF1 in the human aortic arch [1]
- IGF1 stimulated nerve growth in:
 - Sciatic nerve [2]
 - Optic nerve [3]

Purpose

Aim: determine the neuro-regenerative mechanism of Pioglitzazole after nerve crush injury in the rat model

Hypothesis: Pioglitzazole improves cavernosal nerve outcome through an IGF-1 mediated pathway
Methods

• Animals Groups
 1. Sham (n=5)
 2. Bilateral cavernosal nerve crush (BCNI) (n=7)
 3. BCNI + Pioglitazone (n=7)
 4. BCNI + Pioglitazone + JB-1 (IGF-1 antagonist) (n=7)

• 14D oral treatment PBS or Pioglitazone
 – 6.5mg/kg

• 14D subcutaneous treatment: saline or JB-1 (IGF-1 antagonist)
 – 100mg/kg
Methods

ICP/MAP at 2 weeks

- Sham
- BCNI
- BCNI+PIO
- BCNI+PIO+JB1

The chart shows the ICP/MAP at 2 weeks for different conditions and voltage levels (7.5 V, 5 V, 2.5 V). The bars represent the mean values with error bars indicating the standard deviation. Asterisks (*) denote statistically significant differences among the groups.
Area Under the Curve at 2 weeks

- Sham
- BCNI
- BCNI+PIO
- BCNI+PIO+JB1

* Significant differences
Results: Western Blot

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>S5</td>
<td>S6</td>
<td>J3</td>
</tr>
</tbody>
</table>

- **nNOS (150KD)**
- **IGF-I A (22KD)**
- **IGF-I B (17KD)**
- **P44/42-Erk1/2**
- **GAPDH (37KD)**
Tanja Vogel (2013). Insulin/IGF-Signaling in Embryonic and Adult Neural Proliferation and Differentiation in the Mammalian Central Nervous System, Trends in Cell Signaling Pathways in Neuronal Fate Decision, Dr Sabine Wislet-Gendebien (Ed.), InTech, DOI: 10.5772/54946.
Results
Conclusions

• Pioglitazone treatment after BCNI in the rat model restores erectile function equivalent to sham levels

• **JB-1 (competitive antagonist) reversed Pioglitazone’s beneficial effect after BCNI in the rat model**

• Therefore, Pioglitazone’s positive effect on the cavernous nerve works through IGF-1

• Pioglitazone promotes neuronal survival and upregulates expression of IGF-1

• Future work will be done to look at IGF-1R

• This data suggests a novel pathway to treat post-RP ED without the toxicity of PGZ
Future Plans

• Local delivery of IGF-1 after cavernosal nerve injury in the rat via PLGA microspheres

• IGF-1 loaded microspheres will be injected directly into the corpora at the time of surgery

Acknowledgements

- SMSNA
- Dr. Hellstrom
- Tulane Urology Department
- Tulane Pharmacology Department
Mughal et al. Effects of Thiazolidinediones on metabolism and cancer: Relative influence of PPARγ and IGF-1 signaling