Convective RF Water Vapor Energy Ablation Effectively Treats LUTS due to BPH, Preserves Erectile and Ejaculatory Function

Nikhil Gupta, Tobias S. Köhler, Kevin T. McVary
SIU School of Medicine
Division of Urology
Springfield, IL
Rezūm II Study Investigators
Minimally Invasive Prostatic Vapor Ablation - Multicenter, Randomized, Controlled Study for the Treatment of BPH (Rezūm II)

Kevin T. McVary, MD - Southern Illinois University, Springfield, IL
Claus G. Roehrborn, MD - University of Texas Southwestern, Dallas, TX
Steven N. Gange, MD – Western Urology / Jean Brown Research, Salt Lake City, UT
Marc C. Gittelman, MD - South Florida Medical Research, Aventura, FL
Kenneth A. Goldberg, MD - Texas Urology, Carrollton, TX
Kalpesh Patel, MD - Arizona Institute of Urology, Tucson, AZ
Neal D. Shore, MD - Carolina Urologic Research Center, Myrtle Beach, SC
Richard M. Levin, MD - Chesapeake Urology, Towson, MD
Michael Rousseau, MD - The Urology Group, Cincinnati, OH
J. Randolf Beahrs, MD - Metro Urology, Woodbury, MN
Jed Kaminetsky, MD - Manhattan Medical Research, New York, NY
Barrett E. Cowan, MD - Urology Associates of Denver, Englewood, CO
Christopher H. Cantrill, MD - Urology of San Antonio Research, San Antonio, TX
Lance A. Mynderse, MD - Mayo Clinic, Rochester, MN
James C. Ulchaker, MD - Cleveland Clinic Foundation, Cleveland, OH
BPH Treatments

- Minimally-Invasive Surgical Therapy (MIST) for LUTS due to BPH
 - TUNA
 - TUMT
 - Prostatic Urethral Lift
 - Others

- Limited adoption historically
 - Lack durability, high retreatment rates
 - Restricted patient selection (prostate size, median lobe)
Convective RF Water Vapor Energy Ablation

- Rezūm® (NxThera Inc.)

- Radiofrequency generates wet thermal energy – water vapor (steam)

- Steam travels between cells, not beyond collagen barriers

- Disrupts cell membranes – cell death and necrosis
The Rezūm System

Intended to relieve symptoms, obstructions, and reduce prostate tissue associated with BPH.
Heat Transfer Mechanism

Convective RF Thermal Energy
- Transition Zone Boundary
- .42 mL RF Water Vapor Injection
- RF vapor convectively dispersed through interstices
- Condensation releases stored thermal energy
- Cell membranes denatured, causing cell death

Conductive RF Thermal Energy
- Heat Source
- RF heat conductively transferred from cell to cell
- Conductive heating of prostate tissue occurs
- Temp gradient results in cells near heat source substantially more than those further away
Methods

- Men ≥ 50 years old
- IPSS ≥ 13
- Peak flow rate between 5-15 mL
- Prostate size 30-80cc
- PVR < 250cc
- Middle lobe/Median bar not excluded
- Randomized 2:1 – Rezūm vs sham
 - Sham – cysto, simulated sounds
- Blinded comparison at 3 months
 - Treatment arm followed for 12 months
 - At 3 months, sham subjects given option for Rezūm
Methods

• Primary endpoint – Improvement in IPSS 125% greater in treatment than control group
• Questionnaires
 • IPSS
 • IIEF-15
 • MSHQ-EjD
 • MCID
 • 2 for mild ED, 5 for moderate ED, 7 for severe ED
• Uroflow
• Pain – Visual Analog Scale
Results

• 197 subjects
 • 136 treatment group
 • 61 control group

<table>
<thead>
<tr>
<th></th>
<th>Treatment (SD)</th>
<th>Control (SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>63 (7.1)</td>
<td>62.9 (7.0)</td>
<td>0.914</td>
</tr>
<tr>
<td>BMI</td>
<td>28.7 (4.4)</td>
<td>28.1 (5.0)</td>
<td>0.363</td>
</tr>
<tr>
<td>Prostate vol</td>
<td>45.8 (13.0)</td>
<td>44.5 (13.3)</td>
<td>0.525</td>
</tr>
<tr>
<td>PSA</td>
<td>2.1 (1.5)</td>
<td>2.0 (1.6)</td>
<td>0.695</td>
</tr>
<tr>
<td>IPSS</td>
<td>22 (4.8)</td>
<td>21.9 (4.7)</td>
<td>0.857</td>
</tr>
<tr>
<td>Qmax</td>
<td>9.9 (2.3)</td>
<td>10.4 (2.1)</td>
<td>0.187</td>
</tr>
<tr>
<td>PVR</td>
<td>82 (51.5)</td>
<td>85.5 (51.6)</td>
<td>0.658</td>
</tr>
<tr>
<td>IPSS QoL</td>
<td>4.4 (1.1)</td>
<td>4.4 (1.1)</td>
<td>0.800</td>
</tr>
<tr>
<td>IIEF15</td>
<td>17.2 (10.3)</td>
<td>16.5 (9.8)</td>
<td>0.693</td>
</tr>
<tr>
<td>MSHQ-EjD</td>
<td>7.8 (4.1)</td>
<td>9.0 (3.8)</td>
<td>0.050</td>
</tr>
</tbody>
</table>
IPSS, QoL and Qmax

- **IPSS**:}
 - **Baseline**: Treatment 22.0, Control 21.9
 - **1 Month**: Treatment 14.5, Control 15.1
 - **3 Months**: Treatment 10.6, Control 17.5
 - **6 Months**: Treatment 9.8, Control —
 - **12 Months**: Treatment 10.3, Control —

- **IPSS-QoL**:}
 - **Baseline**: Treatment 4.4, Control 4.4
 - **1 Month**: Treatment 3.3, Control 3.4
 - **3 Months**: Treatment 2.3, Control 3.5
 - **6 Months**: Treatment 2.1, Control —
 - **12 Months**: Treatment 2.1, Control —

- **Qmax (ml/sec)**:}
 - **Baseline**: Treatment 9.9, Control 10.4
 - **1 Month**: Treatment 13.1, Control 12.0
 - **3 Months**: Treatment 16.1, Control 10.8
 - **6 Months**: Treatment 15.4, Control —
 - **12 Months**: Treatment 15.1, Control —

* Denotes significant difference of the treatment group from baseline (>3 months) P<.05
† Denotes significant differences of the treatment group from the control group (≤3 months) P<.05
Results

- Voiding change at 3 months

<table>
<thead>
<tr>
<th></th>
<th>Treatment</th>
<th>Control</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSS</td>
<td>-11.2</td>
<td>-4.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>Qmax</td>
<td>6.2</td>
<td>0.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>PVR</td>
<td>-10.6</td>
<td>7.2</td>
<td>0.108</td>
</tr>
<tr>
<td>IPSS QoL</td>
<td>-2.1</td>
<td>0.9</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

- ≥8 point improvement IPSS in >70% of treatment group at 3 months and through end of study
IIEF-EF, MSHQ-EjD Function, MSHQ-EjD Bother

IIEF-EF

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>3 Months</th>
<th>6 Months</th>
<th>12 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>22.6</td>
<td>22.7</td>
<td>22.7</td>
<td>22.9</td>
</tr>
<tr>
<td>Control</td>
<td>21.2</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSHQ-EjD Function

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>3 Months</th>
<th>6 Months</th>
<th>12 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>9.3</td>
<td>9.7</td>
<td>9.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Control</td>
<td>9.8</td>
<td>9.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSHQ-EjD Bother

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>3 Months</th>
<th>6 Months</th>
<th>12 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>2.2</td>
<td>1.8</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Control</td>
<td>2.0</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p<.05
IIEF Domains for Sexually Active Subjects

Erectile Function
- Baseline: Treatment, Control
- 3 Months: Treatment, Control

Orgasmic Function
- Baseline: Treatment, Control
- 3 Months: Treatment, Control

Sexual Desire
- Baseline: Treatment, Control
- 3 Months: Treatment, Control

Intercourse Satisfaction
- Baseline: Treatment, Control
- 3 Months: Treatment, Control

Overall Satisfaction
- Baseline: Treatment, Control
- 3 Months: Treatment, Control

P-values:
- Erectile Function: P=0.795
- Orgasmic Function: P=0.425
- Sexual Desire: P=0.153
- Intercourse Satisfaction: P=0.603
- Overall Satisfaction: P=0.321
Minimal Clinically Important Difference (MCID)*

- MCID for the EF domain represents the smallest difference in score that patients perceive as a benefit, or clinically meaningful
- Changes needed: Mild ≥ 2; Moderate ≥ 5; Severe ≥ 7

Results

• Ejaculatory bother improved 31% over baseline (p=0.0011)

• MCID (mild-2, moderate-5, severe-7)

<table>
<thead>
<tr>
<th></th>
<th>n/N (3 month)</th>
<th>MCID (3 month)</th>
<th>n/N (12 month)</th>
<th>MCID (12 month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe (1-10)</td>
<td>2/7</td>
<td>12.5</td>
<td>2/3</td>
<td>11.5</td>
</tr>
<tr>
<td>Moderate (11-16)</td>
<td>9/15</td>
<td>10.1</td>
<td>6/13</td>
<td>11.2</td>
</tr>
<tr>
<td>Mild (17 – 25)</td>
<td>18/68</td>
<td>4.0</td>
<td>13/61</td>
<td>5.3</td>
</tr>
<tr>
<td>Improved scores (%)</td>
<td>29/90 (32%)</td>
<td></td>
<td>21/77 (27%)</td>
<td></td>
</tr>
</tbody>
</table>
Results

• 42 subjects w median lobe
 • Treatment of median lobe at discretion of physician

• 30 subjects had treatment of median lobe
 • Outcomes similar to subjects without median lobe
 • Symptom scores (p = 0.33)
 • Flow rates (p = 0.52)
Treatment of Obese Subjects

Percentage of Patients with IPSS ≥ 50% Improvement

- Similar improvement in obese and non-obese subjects
- Obese subjects with severe LUTS – earlier and slightly higher percentage of response
Treatment of Obese Subjects

- Obesity associated with more moderate/severe ED
- MCID achievement rate similar regardless of weight or ED severity

<table>
<thead>
<tr>
<th>IIEF-EF Severity</th>
<th>BMI ≤30 (n=54)</th>
<th>BMI ≥30 (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe (1-10)</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Moderate (11-16)</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>Mild (17-30)</td>
<td>87</td>
<td>60</td>
</tr>
<tr>
<td>Achieved MCID</td>
<td>11/54 (20%)</td>
<td>8/30 (27%)</td>
</tr>
</tbody>
</table>

MCID (minimal clinically important difference): minimal increase in IIEF-EF
Mild ED ≥2; Moderate ED ≥ 5; Severe ED ≥ 7
Obesity Effects Response to Medical Treatment?

- Obese (>30 BMI) had the greatest improvement in IPSS total and storage and voiding sub-scores compared with baseline.

- This group also had the largest placebo response among the groups.
Central obesity is predictive of persistent storage LUTS after surgery for BPH: results of a multicenter prospective study

Mean and 95% confidence interval of the mean of postoperative IPSS storage score, stratified according to the number of MetS parameters (age adjusted wald 1.090, p=0.009)
Figure 1: a) total International Prostatic Symptoms Score (IPSS) before (PRE) and after (POST) surgery for BPH; b) Storage IPSS subscore before and after surgery for BPH. WC = waist circumference. Adapted from: Gacci M et al, BJU Int 2015 [29]
Conclusions

- Rezūm® significantly improves symptoms due to BPH in patients with moderate to severe LUTS
- Erectile function is not affected by treatment
- Obese patients experience similar improvements as non-obese patients